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Abstract—This paper describes an approximate thermal analysis of a regenerative heat exchanger. The
approximation used relies on the fact that the dimensionless parameters, known as the reduced periods,
are not too large, a condition which is made more precise in the paper, and which is true for all power
station air heaters. There is no upper limit on the reduced lengths with which the method can cope. The
method gives time averaged fluid outlet temperatures which are equivalent to those deduced from an
analysis of an equivalent recuperator by Hausen (Verfahrenstecknik Z. Ver. Dt. Ing. 2, 31-43 (1942)). The
method also predicts the variation of fluid and heat exchange element temperatures with position and time.
The method is generalized to cover the case of a regenerator with two or more zones with different heat
transfer coefficients in each zone. This has applications in power station regenerative air heaters where
different heat exchange elements are frequently used in the hot and cold zones of the heater, and to high-
temperature regenerators where the variation of fluid properties with temperature can be approximated by
splitting the regenerator into a number of zones, with constant properties in each zone. The results are
compared with a finite difference solution of the regenerator problem for sets of plant data. The ability of
the method to cope with long regenerators is also demonstrated, and the results are compared with Hausen’s
solution and with standard results obtained from the literature.

1. INTRODUCTION

REGENERATIVE heat exchangers are widely used in
industrial processes for the exchange of heat between
two gas streams. A regenerator consists of a porous
packing of solid material through which fluids can
flow. In the operation of a regenerator, a hot gas
(e.g. flue gas leaving a power station boiler) is passed
through the solid, and gives up heat to the solid.
Subsequently a cold fluid (e.g. combustion air for the
boiler) is passed through the solid in the opposite
direction, and receives heat from the solid. In a fixed
bed system at least two regenerators are required for
continuous operation, and the periodic reversal of
flow in each regenerator is achieved by a series of
valves. An alternative configuration is the rotary
regenerator in which the solid heat exchange material
is packed in a drum. This drum is then rotated relative
to the air and gas streams by either rotating the drum,
or by using a stationary drum and directing the flow
through rotating headers (Fig. 1).

Regenerators have advantages over recuperators
(heat exchangers in which the hot and cold fluids flow
continuously and exchange heat via a common solid
wall) in a number of applications. In high-temperature
applications they allow the use of simple materials
for the heat exchange material, such as firebricks or
ceramic checkers. The classic high-temperature appli-
cation of a regenerator is the Cowper Stove as used in
the steel industry. A second advantage of regenerators
occurs at more modest temperatures where dirty or
corrosive gases are used. It is straightforward to allow
for cleaning of the heat transfer surface of a regen-
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F1G. 1. Schematic diagram of two designs of rotary regen-

erative heat exchangers: (a) Ljungstrom design. fixed ducts,

rotating drum; (b) Rothemuhle design, stationary drum,
rotating headers.

erator, e.g. by high-pressure air or steam jets, while
maintaining a compact design of heat exchanger.
From the above, it is clear that a regenerator always
operates in a transient mode, in contrast with a
recuperator, for which a genuine steady state is pos-
sible. Under steady operating conditions a regenerator
will achieve a quasi-steady state in which the tem-
perature oscillations are the same from one cycle to
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NOMENCLATURE
time averaged air temperature y  dimensionless length
amplitude of air temperature oscillation z  position of change in element type.
constant
constant

heat capacity of metal per unit volume

specific heat of fluid

exp (f)

vector of fundamental solutions

exponent in recuperator solution

time averaged gas temperature

amplitude of gas temperature oscillation

metal surface area per unit volume

heat transfer coefficient

ratio of gas and air reduced lengths

length of channel

time averaged metal temperature during gas

cycle

m  amplitude of metal temperature oscillation
during gas cycle

N time averaged metal temperature during air

cycle

amplitude of metal temperature oscillation

during air cycle

temperature

time

period of air cycle

period of gas cycle

dimensionless temperature

mass flow of fluid per unit approach area

length
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Greek symbols
o exponent in general solution
B parameter describing degree of unbalance
¢ small parameter
A reduced length
u  coefficient of quadratic term in metal
temperature during gas cycle
coefficient of quadratic term in metal
temperature during air cycle
n  reduced period

<

Tt  dimensionless time
y  weight function for the heat balance
integral method.
Subscripts

a aircycle

¢ coldest value reached during a complete
cycle

gas cycle

hottest value reached during a complete
cycle

inlet

index denoting fundamental solutions
metal

index denoting region

outlet.
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the next. The thermal performance of the regenerator
can be described in terms of the time averaged outlet
temperatures of the air and gas streams. This problem
has been considered by Hausen [1], who showed that
the fluid outlet temperatures can be determined by
considering an equivalent recuperator. Hausen’s
analysis showed how the heat transfer coefficients in
the recuperator can be related to those in the regen-
erator in order that the fluid outlet temperatures
are the same.

For other aspects of regenerator performance it is
necessary to consider the solution in more detail. For
a fixed bed regenerator the temperature swings at
outlet from the regenerator can be important, while
for a rotary regenerator the fluid temperature swings
can lead to stratification in the fluid outlet ducts. The
amount by which the heat exchange drum of a rotary
regenerator will distort depends on the variation of
the solid temperature through the regenerator. A
knowledge of the thermal distortion is necessary to
provide effective sealing between the stationary and
moving parts of the regenerator. The corrosion and
fouling of any section of the heat exchange elements
will depend on the variation of the local fluid and
solid temperatures [2].

In the following sections a simple approximate ana-
lytic method is developed for the solution of the quasi-
steady state problem under the condition that dimen-
sionless parameters known as the reduced periods are
not much larger than two. This criterion is made more
precise in the subsequent work. The method also
requires the reduced length of the regenerator to be
at least as large as the reduced period, however, there
is no upper limit on the reduced length. These restric-
tions are shown to be satisfied for a selection of power
station rotary generators. The solution gives the time
averaged fluid and solid matrix temperatures at any
point in the regenerator, and also predicts the fluid
and solid temperature oscillations throughout the
depth of the regenerator.

2. THE REGENERATOR EQUATIONS

A counterflow regenerative heat exchanger is con-
sidered under quasi-steady operating conditions. The
fluids which are hot and cold at the inlet will be
referred to as gas and air, respectively, their tem-
peratures and physical properties are referred to with
subscripts g and a, respectively. During the gas phase
(—t, <tr<0), the fluid and metal temperatures
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(which are denoted by a subscript m) satisfy the equa-
tions 3]

0T, |ox = —(h HIW e, (T, —Ty) (1)
and
0T, [0t = (hH|CYT,—T,,) 2)

where x denotes the distance from the gas inlet, T the
temperature (with 7, the matrix temperature) and 4,
H, W, ¢, and C the heat transfer coefficient, the metal
surface area per unit matrix volume, the mass flow of
fluid per unit approach area, the specific heat of the
fluid and the heat capacity of the metal per unit matrix
volume.

Equations (1) and (2) ignore the effects of heat
conduction in the elements parallel to the direction of
the fluid flow, the heat capacity of the fluid resident
in the regenerator, and the difference between the
average temperature and the surface temperature of
the elements, all of which can be shown to be very
small for a power station air heater.

Equations (1) and (2) can readily be made dimen-
sionless by setting

U= (T_ Tai)/(Tgi_Tai) (3)

where T, and T, are the gas and air inlet tempera-
tures, and setting y = x/l where / is the length of the
channel and 1 = ¢/, to give
aug/ay = ‘"Ag(ug-um) (4)
Ot 0T = Ty (Uy — Uy ) (%)
where the dimensionless constants A, = (h,HI/W c,,)
and &, = (h,Ht,/C) are exactly equivalent to the con-
stants A and = used by Hausen. These constants are
generally referred to as reduced length and reduced
period, respectively. Equations (4) and (5) apply for
0<y<tland —1 <1 <0.In asimilar way one can

obtain dimensionless equations for the air phase. For
these equations y = x// and 1 = t/t, are set to give

aua /5J’ = Aa (ua - um) (6)
Oum /0T = T, (Uy — Uy N

for0<y<1,0<t<1.
The appropriate boundary conditions are

u,=1 aty=0for -1 <7t <0 ®)
and
u, =0 aty=1for0<t<1. &)

Finally, conditions are required to describe the quasi-
steady, periodic operation of the regenerator. These
are

u,, continuous across 7 = (
and for0<y<1 (10)

U, (t= -1 =u,(t=1).

To date two types of method have been developed
to solve this problem. The problem can be solved
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numerically as an initial value problem and the solu-
tion continued until the periodicity conditions (equa-
tions (10)) are approximately satisfied [4]. Alter-
natively, Iliffe [S] and Nahavandi and Weinstein [6]
solved the steady, periodic problem in terms of the
solution to an integral equation.

The steady periodic problem has also been solved
by Hill and Willmott [7] who used the method of lines
to reduce the problem to a system of typically 20 or
30 ordinary differential equations in time. In Section
3 a simpler method is developed for the solution by
approximating the time variation of temperature at
any point as a polynomial. This method applies only
to regenerators with a reduced period of 7 =2 or
less, a condition which is satisfied by the rotary air
preheaters installed in power station boilers.
However, there are no difficulties with the method
if the reduced length of the regenerator is large, a
condition which does lead to difficulties with some of
the above methods.

3. FORMULATION OF THE METHOD

A technique which can be applied to obtain
approximate analytic solutions to heat conduction
problems is the heat balance integral method [8, 9]. A
typical heat conduction problem may consist of a
differential equation

L) =0 (n

which applies for 0 <y <1, 7> 0 together with
appropriate boundary conditions. A function v is
accepted as an approximate solution of the heat con-
duction problem if it satisfies the boundary conditions
together with a weaker form of equation (11), namely

L L@)y;(»dy =0 (12)

for some sequence of functions

XiJj=12,....,J (13)

The method provides no mechanism for estimating
the accuracy of an approximate solution other than
by comparing it with an exact or numerical solution
to the problem. However, providing care is taken in
choosing the form of the approximate solution, the
method provides useful results.

A similar technique will be applied to obtain an
approximate solution to the regenerator problem,
except that for this problem it is convenient to inte-
grate the differential equations with respect to time
rather than distance. Hence instead of solving equa-
tion (4) an approximate solution will be accepted
which satisfies

0
J‘ (Ouy [0y + AUy —u, Ny (tydr =0 (14)
—1

for j =1,2,...,J. The weak or integrated forms of
equations (5)—(7) follow in a similar way. The
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approximate solution will be chosen so that the tem-
perature distributions are polynomials in 7 at any
point along the length of the regenerator, i.e. the tem-
perature is written as polynomials in the dimensionless
time 7, the coefficients of which are functions of y.
Because of the time derivative in equations (5) and
(7) the polynomials for u,, are required to be one
degree higher than those for u, and u,. If attention is
restricted to cases where the reduced periods m, and
7, are not too large and the ratios n/A are not larger
than 1, the exact variation of temperature with time
will have a ‘sawtooth’ pattern which can be reasonably
well approximated by low-order polynomials. If u,, is
approximated by a quadratic function of 7 in each
period and u, and u, by linear functions of 7, one can
write

uy = G(y)+g(M(t+3) 1s)
U = M(p)+m(p)(T+3) + 3u(){(x+3)> - 1/12}
(16)
for0<y<l1, —1<1t<0,and
u, = A(Y) +a()G -1 17
U = NO)+1() =0+ () {(G -0’ = 1/12} (18)

for0<y<l,0<1<1.

The equations to be satisfied by the unknown func-
tions G, g, etc., will come from the weak form of the
Nusselt equations, such as equation (14). With the
choice

xi(0) =1
four equations are obtained
0Gjoy = —A,(G—M) (19)
0A4/0y = A,(A—N) (20)
m=n,(G—M) (21)
n= —mn(A—N). (22)

A further four equations can be obtained with the
choice

x2(0) =1
0g/dy = —Ag(g—m) (23)
da/dy = A,(a—n) 24)
u=m,(g—m) (25)
v=—m,(a—n) (26)

(using equations (19)—(22)). The periodicity equations
(10) give
@7
and

M+n,(g—m)/12=N—m,(a—n)/12.  (28)
The boundary conditions become simply

G=1,g=0 aty=0
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A=a=0 aty=1. (29)

Equations (19)-(28) form a system of ten equations
for the ten unknown functions of y in the approximate
solution (equations (15)—(18)), hence with this form
of approximate solution it is appropriate to take
J = 2. It would be possible to introduce further terms
into the approximate solution and to take a larger
value for J. However, since the above solution will be
shown to give a good approximation to all the features
of interest of the problem this has not been done.

4. RESULTS OF THE METHOD

Equations (19)-(28) can be regarded as a fourth-
order system of differential equations subject to the
four boundary conditions (29). As the system is linear,
it is appropriate to obtain the solution in terms of
superposition of four fundamental solutions which
are derived in the Appendix. In the solution the
parameter

e = A, /12(A, +A,) (30)

is regarded as small and all terms in & are ignored.
This is consistent with the assumption of the form
of the time variation of u, and it should be a good
approximation for n, and 7, < 2.

For convenience the sequence {G, 4, M, N, g,a, m}
is denoted by F. Writing the four fundamental solu-
tions as F, for j =1, 2, 3 and 4, the general solution
of equations (19)—(28) is

F=Y pF,. 3D

1

Use of boundary conditions (29) yields a system of
four linear equations for the coefficients 4,. In general
the solution of these linear equations is numerical,
however, for cases where the dimensionless lengths
are sufficiently large for e *: and ¢ *: to be neglected
an analytic solution becomes practical. For this latter
case the dimensionless outlet temperatures are as
given below.

4.1. Balanced regenerator

A regenerator is defined to be balanced if
A,/my = A,/m,. In this case the time average of the
dimensionless air outlet temperature is A(0), i.e. the
second element of F evaluated at y = 0, which is

A0) = (A, —2e)/(1+k+A,—2e) (32)
where

k= A, /A, (33)

Similarly the time averaged gas outlet temperature is

G() = (1+k)/(A+k+A,—2e). 34

It is of interest to note that the limits of these terms
as ¢ — 0 are the outlet temperatures for a continuously
acting recuperator. For details of the analysis of a
recuperator see, e.g. Kays and London [10]. The
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dimensionless air and gas outlet temperature swings
can be seen from equations (15) and (17) to be a(0)
and g(1), respectively. These take the values

a(0) = g(1) = n,(1 —¢/(V +K)/ (A +k+ A, —2¢6). (35)

4.2. Unbalanced regenerator
The mean air outlet temperature is

A0) = {(E-DA+) —ef (E/B+ 1)}/
H{E=B)A,+ ) —ef(EIB+B)}  (36)

where
f=Am—Am)/(n,+7,) (37
E=c¢' (38)
and
p=Am, /AT, (39)
The air outlet temperature swing is
a(0) = m, f {1 —eB/(1+Kk)}/
{E=B)A+ ) —¢f (E/B+B)}.  (40)

The mean gas outlet temperature is

G(1) = E{(1-B)Y(A+ /) —ef(1/B—1)}/
{E=B)Y A+ ) —ef(EIf+B)} (4D

and the gas outlet temperature swing is

9() = n Ef {B—¢/(1+K)}/
{E=B)A + /) —ef (EIB+B)}.

Other qualities of interest, e.g. the variation of metal
temperature, can be determined from the detailed
solution in the Appendix.

(42)

5. REGENERATOR WITH TWO SETS OF HEAT
EXCHANGE ELEMENTS

The heat exchange elements for a power station
regenerative air heater will ideally provide high ther-
mal performance and a low susceptibility to fouling
and corrosion. In a number of air heaters it has been
found advantageous to have two completely different
designs of element to cope with the varying conditions
throughout the heater. Over most of the depth the
regenerator is fitted with elements of high thermal
performance, but close to the air inlet end, where the
lowest temperatures occur, the elements are chosen to
have a low susceptibility to fouling, which generally
means that the thermal performance is lower. In
consequence the values of A and = will be different
for the two elements.

For high-temperature applications of regenerators
the fluid properties vary strongly with temperature,
especially if radiative heat transfer becomes signifi-
cant. One approximation which is used is to split the
regenerator into a number of zones and to take the
fluid properties appropriate to a representative tem-
perature in each zone. The following is directly appli-
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cable to a two-zone approximation for a regenerator,
and the generalization to three or more zones is
straightforward.

In each of the two regions of the regenerator the
temperatures will be approximated by equations of
the form of equations (15)—(18). In each region the
functions G, ¢, 4, a, etc. will satisfy equations of the
form of equations (19)—(28), and the fundamental
solutions will be of the form given in the Appendix
with the constants A,, A,, 7, and =, taking the appro-
priate values in each region. The solution will take the
form

4
F=Y§F O<y<:z (43)

j=1

and

4
F=3 bk, z<y<l

J=1

(44)

where the interface between the two regions is y = z.

At the interface between the two elements or zones
it is clear that the gas and air temperatures must be
continuous at all times, so that G, g, 4 and a are
continuous functions of y at y = z. It is not appro-
priate to impose any condition of continuity on the
solid temperature as axial heat conduction along the
solid has been ignored. In practice in a rotary regen-
erator with two sets of elements, the upper and lower
elements are separated by a small gap, so that even
if axial heat conduction was included in the model,
conditions of continuity of the element temperature
at the interface would not be imposed.

Use of the four boundary conditions (29) and the
four interface conditions

G,g,A,a, continuousaty = z (45)

give a system of eight linear equations from which the
eight constants b, in equations (43) and (44) may be
determined. In this case an analytic solution of the
equations is not practical, and the equations are
solved numerically.

6. DISCUSSION

One can investigate the effect of the approximations
made in the solution of equations (1) and (2) by
comparing the solution with numerical results from a
finite difference scheme. The finite difference method
used was developed by Donovan (private com-
munication) and is similar in form to that described
by Willmott [4]. There are two approximations made
in obtaining an analytic solution to the problem,
which are that the time variation of the actual tem-
perature distribution should be similar to the assumed
form (equations (15)—(18)) and that the parameter
¢ is small compared with unity. Both of these are
reasonable approximations provided the reduced per-
iods 7, and =, are not too large and that n, and =,



1436

D. R. ATTHEY

Table 1. Comparison of methods for a two-element case (all temperatures dimensionless)

Heat balance

Finite difference

Finite difference

method 80 x 80 40 x 40 Hausen
Gas inlet end

Mean air temperature 0.7608 0.7616 0.7604 0.7647
Metal temperatures :

mean 0.8925 0.8918 0.8902 0.8945

hottest 0.9494 0.9482 0.9463 0.9608

coldest 0.8212 0.8208 0.8188 0.8282

x =0.65/

Mean gas temperature 0.5310 0.5314 0.5294
Mean air temperature 0.1871 0.1886 0.1859
Metal temperatures :

mean 0.3765 0.3776 0.3753

hottest 0.4749 0.4757 0.4737

coldest 0.2890 0.2890 0.2863

x =07

Mean gas temperature 0.5035 0.5031 0.5043
Mean air temperature 0.1533 0.1533 0.1537
Metal temperatures :

mean 0.3533 0.3533 0.3537

hottest 0.3769 0.3769 0.3773

coldest 0.3333 0.3337 0.3333

Air inlet end

Mean gas temperature 0.3780 0.3776 0.3784 0.3733
Metal temperatures:

mean 0.2157 0.2161 0.2169 0.2133

hottest 0.2404 0.2404 0.2412 0.2361

coldest 0.1937 0.1941 0.1945 0.1906
Parameters:

Ay = 5739, A, =5702, Ap=2673, A, =245
my = 1.267, m, =1.029, =, =0288, =n,=0216
g, =0.053, &, =0.003

Change in element characteristics at x = 0.666/

are no larger than 2 and no larger than A, or A,
respectively.

In Tables 1 and 2 the results obtained by the present
heat balance method are compared with finite differ-
ence results using data from two power station regen-
erative air heaters. The heater represented in Table 1
has hot and cold elements with different charac-
teristics, and its dimensionless lengths and periods are
typical of those from air heaters in operation in the
CEGB. Table 2 represents an air heater with a com-
bination of high-performance elements and a slow
speed of rotation, which result in larger values of =.

In the tables data is given from the finite difference
method using two values for the step lengths of the
space and time variables. The truncation error can be
estimated by comparing the results with two different
step lengths. It is seen that the heat balance method
differs from the fine mesh finite difference results by
up to 2 x 1073, which is slightly less than the estimate
of truncation error. For the data in Table 2, which is
slightly outside the range of n for which the method
is expected to be accurate, the difference between the
heat balance method and the finite difference results

is around 1072, which is about twice the estimate of
truncation error.

The Hausen method referred to earlier reformulates
the regenerator as a recuperator with a slightly modi-
fied length. Strictly speaking the method only applies
to a heat exchanger fitted with a single element type,
although in principle it could be modified for the two-
clement case. An alternative approach to apply the
Hausen method to a heater with two element types is
to use the standard Hausen correction term, but with
suitably defined overall values for the reduced length
and period. This approach was used to obtain the
data in the final column of Tables 1 and 2. Hausen’s
method only gives a direct estimate of the time aver-
aged fluid and metal temperatures. However, it is pos-
sible to use these to estimate the heat transfer from the
fluids to the metal and hence to estimate the time
variation of metal temperature. This is done in the
final column of Tables 1 and 2. Note that the estimate
of the time averaged metal and fluid temperatures
obtained from the Hausen method are slightly in
error, whereas the estimates of the time variation of
the metal temperatures are noticeably worse.
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Table 2. Comparison of methods for an extreme two-element case (all temperatures dimensionless)

Heat balance

Finite difference

Finite difference

method 80 x 80 40 x 40 Hausen
Gas inlet end
Air temperature :
mean 0.8888 0.8895 0.8881 0.8926
hottest 0.9554 0.9505 0.9474
coldest 0.8233 0.8177 0.8167
Metal temperatures :
mean 0.9488 0.9484 0.9467 0.9512
hottest 0.9899 0.9902 0.9888 1.0136
coldest 0.8871 0.8801 0.8791 0.8888
x = 0.5/
Gas temperature :
mean 0.7152 0.7163 0.7145
hottest 0.8149 0.8079 0.8066
coldest 0.6155 0.6107 0.6075
Air temperature :
mean 0.5249 0.5270 0.5249
hottest 0.6480 0.6431 0.6375
coldest 0.4019 0.4123 0.4106
Metal temperatures :
mean 0.6288 0.6267 0.6284 0.6267
hottest 0.7365 0.7372 0.7358 0.7365
coldest 0.5120 0.5155 0.5131 0.5204
Air inlet end
Gas temperature :
mean 0.3043 0.3036 0.3039 0.3032
hottest 0.3876 0.3911 0.3900
coldest 0.2210 0.2220 0.2252
Metal temperature :
mean 0.1680 0.1687 0.1694 0.1677
hottest 0.2259 0.2262 0.2266 0.2192
coldest 0.1199 0.1206 0.1216 0.1161
Parameters :
Ay =8947, A, =951, A, =5569, A,=5764
Ty = 2.632, m, =2190, m,=20.784, m, =0.635
g =0.233, &, =0.020

Change in element characteristics at x = 0.84/

In Table 3 the method is used to estimate the effec-
tiveness, i.e. the dimensionless air outlet temperature
of balanced symmetric regenerators with a single
element type with dimensionless length A in the range
1-10 and dimensionless periods n of 1, 2 and 3. The
results are compared with results presented in Schmidt
and Willmott [3], computed by the method of
Willmott [4]. It is seen that there is good agreement
for = = 1 and 2 apart from the case A = 1, = = 2. For
7 = 3 the agreement is good for larger values of A but
becomes poor for A = 3 or less. This is in line with
the limitations of the method, since the assumed form
of the temperature distribution will not be a good
approximation if A < #, and the parameter ¢ cannot
be regarded as small if =7 > 2.

In Tables 4 and 5 the method is used to predict the
dimensionless metal and gas temperatures at the start
and end of the gas cycle for long balanced symmetric
regenerators. These cases have also been considered
by Hill and Willmott [7]. Their results are not pre-

sented here, however the maximum difference between
the temperatures predicted by the two methods is
1074,

Finally in Table 6, some cases considered by Naha-
vandi and Weinstein [6] are presented. The predicted
effectiveness (i.e. the dimensionless air outlet tem-
perature) is compared with the generally accepted
value for the effectiveness as given for example by Hill
and Willmott [7]. It is seen that only the first four
cases presented here satisfy the constraints of the
method, i.e. A = nand n < 2. For these four cases the
agreement is good. For the remainder of the cases
considered by Nahavandi and Weinstein the heat bal-
ance method gives poor or even nonsensical results
with the predicted effectiveness sometimes outside the
range [0, 1]. These latter cases, of which four are pre-
sented in Table 6, are intended as a demonstration
that the heat balance method should not be used out-
side the parameter range for which it was developed.

The CPU time used to generate all the heat balance
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Table 3. Values of the effectiveness for balanced symmetric

regenerators as computed by the heat balance method.

Values from Schmidt and Willmott [3] are given in par-
entheses for comparison

Reduced period, n

Reduced length, A 1 2 3

| 0.3215 0.2846 0.2177
(0.3221) (0.2930) (0.2559)

2 0.4909 0.4616 0.4061
(0.4912) (0.4664) (0.4305)

3 0.5936 0.5731 0.5342
(0.5937) (0.5757) (0.5477)

4 0.6621 0.6475 0.6202
(0.6622) (0.6490) (0.6282)

5 0.7109 0.7001 0.6803
(0.7109) (0.7012) (0.6856)

6 0.7474 0.7392 0.7242
(0.7474) (0.7400) (0.7280)

7 0.7757 0.7692 0.7576
(0.7758) (0.7699) (0.7605)

8 0.7983 0.7931 0.7838
(0.7984) (0.7936) (0.7861)

9 0.8168 0.8125 0.8049
(0.8169) (0.8129) (0.8068)

10 0.8322 0.8286 0.8222
(0.8322) (0.8289) (0.8238)
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results used in the tables was 0.11 s on an Amdahl
5870 mainframe computer or 25 s on an Olivetti M24
personal computer. For comparison an open finite
difference method similar to the Willmott method [4]
used 20 gridpoints and 20 time steps for each period
for a typical case, and took 23 cycles to reach equi-
librium. The corresponding CPU times were 0.47 s on
the Amdahl and 115 s on the Olivetti for this one case.

7. CONCLUSIONS

The steady-state temperature distribution in a
regenerator has been determined by an approximate
analytic method based on the heat balance method.
The solution has been shown to be a good approxi-
mation to the temperature distribution in rotary
regenerators in power station boilers. The method is
restricted to cases where the reduced periods are not
too large, however, there is no restriction on the
reduced lengths. A novel feature of the method is that
it can readily cope with a number of regenerators in
series. This has applications to power station air heat-
ers where different heat exchange elements are usually
fitted in the hot and cold zones of the heater. Another

Table 4. Values of the dimensionless metal temperature at the start and end of the gas cycle for long
balanced symmetric regenerators with = = 0.1

Dimensionless metal temperature at
start of gas cycle

Dimensionless metal temperature at
end of gas cycle

y A =100 A =250 A =500 A =100 A =250 A =500
0 0.9897 0.9958 0.9974 0.9907 0.9962 0.9981
0.1 0.8917 0.8966 0.8983 0.8927 0.8970 0.8985
0.2 0.7936 0.7974 0.7987 0.7946 0.7978 0.7989
0.3 0.6956 0.6982 0.6991 0.6966 0.6986 0.6993
0.4 0.5976 0.5990 0.5995 0.5985 0.5994 0.5997
0.5 0.4995 0.4998 0.4999 0.5005 0.5002 0.5001
0.6 0.4015 0.4006 0.4003 0.4025 0.4010 0.4005
0.7 0.3034 0.3014 0.3007 0.3044 0.3018 0.3009
0.8 0.2054 0.2022 0.2011 0.2064 0.2026 0.2013
0.9 0.1074 0.1030 0.1015 0.1083 0.1034 0.1017
1.0 0.0093 0.0038 0.0019 0.0103 0.0042 0.0021

Table 5. Values of the dimensionless gas temperature at the start and end of the gas cycle for long balanced
symmetric regenerators with 7 = 0.1

Dimensionless gas temperature at
start of gas cycle

Dimensionless gas temperature at
end of gas cycle

y A =100 A =250 A =500 A =100 A =250 A =500
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.9015 0.9006 0.9003 0.9025 0.9010 0.9005
0.2 0.8034 0.8014 0.8007 0.8044 0.8018 0.8009
0.3 0.7054 0.7022 0.7011 0.7064 0.7026 0.7013
0.4 0.6074 0.6030 0.6015 0.6083 0.6034 0.6017
0.5 0.5093 0.5038 0.5019 0.5103 0.5042 0.5021
0.6 0.4113 0.4047 0.4023 0.4123 0.4050 0.4025
0.7 0.3132 0.3054 0.3027 0.3142 0.3058 0.3029
0.8 0.2152 0.2062 0.2031 0.2162 0.2066 0.2033
0.9 0.1172 0.1069 0.1035 0.1181 0.1073 0.1037
1.0 0.0191 0.0077 0.0039 0.0201 0.0081 0.0041
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Table 6. Values of the effectiveness for unbalanced asym-
metric regenerators (only the first four cases are within the
range of validity of the heat balance method)

Effectiveness

Effectiveness (Hill and

A, A, 7, T, (heat balance) Willmott)
1.4 20 1.0 1.0 0.5266 0.5271
2.8 40 20 20 0.7062 0.7087
1.0 20 1.0 10 0.5510 0.5516
2.0 40 20 20 0.7425 0.7462
4.0 80 40 4.0 0.8761 0.8929
80 160 80 8.0 1.0730 0.9717
0.2 20 20 20 0.5233 0.5535
1.0110 0.8010

application is to high-temperature regenerators where
it is convenient to approximate the temperature vari-
ation of the fluid properties by splitting the regen-
erator into a number of zones, in each of which the
fluid properties are assumed to be constant.

Acknowledgement—This paper is published by permission of
the Central Electricity Generating Board.
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APPENDIX

Equations (19)-(28) form a fourth-order system of differ-
ential equations which are subject to the four boundary
conditions (29). For convenience a solution of the system is

denoted by the sequence
F={G A, M,N,g,a,m}. (AD

Solutions to the system can be obtained by assuming that F
has the form Ce*. Equations (19)—(27) are satisfied by

F=1{1,1.1,1,0,0,0}

which corresponds to a = 0, and by

(A2)
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F = {Ay/mg Ay /7 (g + ) mg, (A, — ) T,
—Ag/(Ag+a), —Aa/(A,—a), —af e (A3)
for any value of «, while equation (28) gives
{Am,— Ay, — (n,+7,)a}
X {(A,— ) A+ o) —a’m,m, /12 = 0 (A4d)
which is satisfied by « = f, where
[ = A —Am) (g + 1) (AS)
or by
(A —0) (A, +a) = &7, /12, (A6)
One can now set
&= Agm,m, [12(A, +A,) (AT)

and restrict attention to problems where ¢ is small and ignore
terms in 2. Note that this is consistent with the assumption
of the time variation of u, and it should be a good approxi-
mation for 7, and 7, < 2. Equation (A6) is approximately
satisfied by

a=A+Age (A8)
and
x=A,—Aelk (A9)
where
k=A,/A,. (A10)

It is now convenient to consider separately the cases of a
balanced regenerator, i.e. a regenerator for which /' =0, and
an unbalanced regenerator.

Balanced regenerator

For this case there is a repeated root « = ( and instead
one has a solution which is linear in y. Two fundamental
solutions are then

Fo={1,1,1,1,0,0,0) (A11)
F,={l+k—Ay, - Ay, k—A . k—Ay.m,, 1, 7, )
(A12)

Substituting equations (A8) and (A9) into equation (A2)
and retaining only the highest term in & throughout one
obtains two other fundamental solutions as

F; = {6,60,e(1+k), m, em, /(1 +k),em, } ¢ (A13)
F,={—¢ —e& —e(1+k)/k,0,em, /(1 +k),
T, emy [k} e (Al4)

The general solution of equations (19)—(28) is given by

4
F=Y bF,

i=1

(A15)

and boundary conditions (29) give a system of four linear
equations from which the constants b, can be determined. In
general a numerical evaluation of the constants b, is appro-
priate, however if the dimensionless lengths A, and A, are
large enough for the terms exp (—A,) and exp (—A;) to be
neglected, the equations simplify considerably. In this case
the solution is

F={(A,—&F,+F,—F:—F,}/(1+k+A,—2¢).
(A16)

The time outlet temperatures and temperature swings, equa-
tions (32), (34) and (35), follow immediately by substitution.

Unbalanced regenerator

For an unbalanced regenerator, the quantity f given by
equation (A4) is nonzero. The following notation is intro-
duced:

E=¢ and B=Am /A7, (A17)
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Four fundamental solutions to equations (19)—(28) are As before the general solution is given by equation (A15),
and a numerical solution of the resulting linear equations is
F,={1,1,1,1,0,0,0} (A18)  required, except for the case where A, and A, are large enough

for the exponential terms including them to be neglected. In

FZ = {ﬂ, la 7""a([\a\_*'[\g)/l\a (na +ng)5 na(Aa+Ag)/Aa(7Ta +ng)’ [hlS case the SOlutiOﬂ iS

=B f1(Ag+ 1), —mo I+ ), ~m 1A} (A19) F = {EA+/—¢fIB)F, — (A, + /)F,—BfF,—EfF,}/
F3 = {e,¢/B,0,e(1+k)/B, n, emg /(L +k),em, e ™. (A20) {(E=B)YA+ 1) —ef(B+EIB)}. (A22)

F,={—z —&/B, —e(1+k)/k,0,en/(1+k), ., Once again the outlet temperatures and temperature swings,
=1 /B, —e(l+R)/k, O, emy/(1+K), mg equations (36) and (40)—(42), follow by substitution.
emyfk}eMOD (A21)

ANALYSE THERMIQUE APPROCHEE D’UN ECHANGEUR DE CHALEUR
REGENERATEUR

Résumé—On décrit une analyse thermique approchée d’un régénérateur thermique. L’approximation
repose sur le fait que les paramétres adimensionnels, tels que les périodes réduites, ne sont pas grands,
condition qui est précisée et qui est réalisée pour tous les réchauffeurs d’air. La méthode donne les
températures moyennes dans le temps a la sortie, qui sont équivalentes a celle déduites d’une analyse de
Hausen (Verfahrenstecknik Z. Ver. Di. Ing. 2, 31-43 (1942)). La méthode prédit aussi la variation des
températures du fluide et des éléments de ’échangeur avec la position et le temps. La méthode est généralisée
pour couvrir le cas d’un régénérateur avec deux zones ou plus ayant des coefficients de transfert thermique
différents. Cela s’applique a des réchauffeurs d’air ou des éléments d’échangeur différents sont fréquemment
utilisés dans les zones chaudes et froides du réchauffeur, et a des régénérateurs a haute température ou la
variation des propriétés du fluide avec la température peut étre approchée en séparant le régénérateur en
plusieurs zones dans chacune desquelles les propriétés sont constantes. Les résultats sont comparés avec
la solution par différences finies. L’aptitude de la méthode est démontrée pour des régénérateurs longs et
les résultats sont comparés avec la solution de Hausen et avec les résultats classiques donnés dans les
publications.

EINE THERMISCHE NAHERI:TNGSANALYSE FUR EINEN
REGENERATIVWARMETAUSCHER

Zusammenfassung—Der Aufsatz beschreibt eine Niherungsanalyse fiir einen regenerativen Wirme-
tauscher. Das Néaherungsverfahren beruht auf der Tatsache, daB die dimensionslosen Parameter, auch als
reduzierte Periodendauer bekannt, nicht zu groBe Werte annehmen. Diese fiir alle Kraftwerks-Lufterhitzer
zutreffende Bedingung wird in dem Aufsatz ndher erldutert. Fir die GroBe der dimensionslosen Lingen
gibt es keine Einschrinkung. Das Verfahren liefert zeitlich gemittelte Austrittstemperaturen, welche mit
den von Hausen (Verfahrenstecknik Z. Ver. Dt. Ing. 2, 31-43 (1942)) bei der Analyse eines dquivalenten
Rekuperators gefundenen Werten iibereinstimmen. Weiterhin wird die Anderung der Fluidtemperatur
und der Temperatur der Wérmeiibertragungselemente in Abhéngigkeit von Zeit und Ort bestimmt. Das
Verfahren gilt fiir den allgemeinen Fall eines Regenerators mit zwei oder mehr Abschnitten, von denen
jeder unterschiedliche Warmeiibergangskoeffizienten haben kann. Dieser Fall kommt in regenerativen
Kraftwerks-Lufterhitzern vor, bei denen unterschiedliche Wirmeiibertragungselemente wechselweise in
heiBen und kalten Bereichen des Warmetauschers verwendet werden. Eine weitere Anwendungsmdéglichkeit
sind Hochtemperatur-Regeneratoren, bei denen zur Annéherung der Anderung der Stoffeigenschaften des
Fluids mit der Temperatur eine Aufteilung des Regenerators in mehrere Bereiche erfolgt, in denen diese
GroBen als konstant angesehen werden. Die Ergebnisse werden mit denen einer Losung nach dem Finite-
Differenzen-Verfahren fiir Betriebsdatensitze verglichen. Weiterhin wird die Eignung des Verfahrens fiir
lange Regeneratoren gezeigt und die Ergebnisse mit der Losung von Hausen und Literaturergebnissen
verglichen.
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MPUBJWXXEHHBIA TEIJIOBON AHAJIN3 PETEHEPATUBHOI'O TEITJIOOBMEHHUKA

Amoraums—IIpencrasnen npuOIHXKeHHBI# TEINIOBOH aHA/IH3 DPEreHEPATHBHOIO TEILIOOOMEHHHKA.
Hcnonp3yemas annpoxcMMalHsg OCHOBaHA Ha TOM, YTO Ge3pa3MepHEIE NapaMeTphl, H3BECTHELIC KaK MpPH-
BEJIEHHbIE NEPHOMBI, HE CIMWIIKOM BEJIHKH—YCJIOBHE, KOTOPOE YTOYHAETCA B HacrosAwmed pabore u
KOTOpOe CNpaBeMIHBO IS BCEX BO3OyXOHATrpeBaTeNie anekTpocTaHnmil. He cymecTByeT BepxHero
npenesia yMeHbLICHHBIX pa3MEPOB, K KOTOPOMY HaHHLIM METON MOXeT OuTh mpumeneH. [losydenst
OCpeIHEHHbIE 0 BPEMEHH TEMIEPATYPhl XHUAKOCTH HAa BBIXOJE, IKBMBAJICHTHbIE TEMNEpPATypaM, BLIBe-
IEHHBIM B PE3yJIbTATE aHalM3a aHAJIOTHYHOIO pekynepatopa XayseHa (Verfahrenstecknik Z. Ver. Dt.
Ing. 2, 31-43 (1942)). PaccuuTaHO BpeMEHHOE H MPOCTPAHCTBEHHOE H3MEHEHHE TEMIIEPATYD XHAKOCTH 1
TeMI00OMEHHOTO 3j1eMeHTa. MeTon o6obuieH Ha ciysail pereHepatopa ¢ AByMs Wim 6oJsiee 30Hamuy,
HMEIOLME kK03ddHIHeHTH TEMI00OMeHa, OTIHYAIOINECA LUIA KaXAOH 30HBL. Metona npumMeHum B
pEr¢HEpAaTHBHBIX BO3JyXOHAIDEBATENAX IJIEKTPOCTAHUMMA, TAE PAa3JIMYHbIC TEIIOOOMEHHBIC 3AEMCHTEI
4acTO HCHOJB3YIOTCA B FOPAYMX U XOJOLHBIX 30HAX HATPEBATENA, H B BBICOKOTEMIIEPATYPHEBIX PereHepa-
TOpax, rae W3MeHeHHe CBOMCTB JKHAKOCTH C TEMIIEPaTypoOil MOXET ObITh aNpPOKCHMHMPOBAHO IyTeM
pa3/ejieHHs PEr¢HepaTopa Ha HECKOJIBKO 30H C MOCTOSHHBIMH CBOHCTBAMHM B Kaxmo# u3 HuX. Pesyis-
TaThl CPAaBHUBAIOTCA C PEIICHHEM B KOHECYHBIX Pa3HOCTAX 3a/a4M PEreHeparTopa s Habopa JaHHBIX
g cranmuy. [IponeMoHCTpHpOBaHa MPHTOAHOCTh METOMA MJIA IUIMHHBIX PEreHEpaTOpOB; Pe3yJIbTaThl
CPaBHHBAIOTCS C pellieHHeM Xay3eHa ¥ CTaHAAPTHEIMH JaHHBIMH, HMEOLMMHACS B JIHTEPATYpE.
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